Nepomuk Tasks: Let The Virtuoso Inferencing Begin

Only four days ago I started the experiment to fund specific Nepomuk tasks through donations. Like with last year’s fundraiser I was uncertain if it was a good idea. That, however, changed when only a few hours later two tasks had already reached their donation goal. Again it became obvious that the work done here is appreciated and that the “open” in Open-Source is understood for what it actually is.

So despite my wife not being overly happy about it I used the weekend to work on one of the tasks: Virtuoso inferencing.

Inference?

As a quick reminder: the inferencer automatically infers information from the data in the database. While Virtuoso can handle pretty much any inference rule you throw at it we stick to the basics for now: if resource R1 is of type B and B derives from A then R1 is also of type A. And: if R1 has property P1 with value “foobar” and P1 is derived from P2 then R1 also has property P2 with value “foobar“.

Crappy Inference

This is already very useful and even mandatory in many cases. Until now we used what we called “crappy inferencing 1 & 2”. The Crappy inferencer 1 was based on work done in the original Nepomuk project and it simply inserted triples for all sub-class and sub-property relations. That way we could simulate real inference by querying for something like

select * where {
  ?r ?p "foobar" . 
  ?p rdfs:subPropertyOf rdfs:label .
}

and catch all sub-properties of rdfs:label like nao:prefLabel or nie:title. While this works it means bad performance, additional storage and additional maintenance.

The Crappy Inferencer 2 was even worse. It inserted rdf:type triples for all super-classes. This means that it would look at every added and removed triple to check if it was a rdf:type triple. If so it would add or remove the appropriate rdf:type triples for the super-types. That way we could do fast type queries without relying on the crappy inferencer 1 which relies on the rdfs:subClassOf method. But this meant even more maintenance and even more storage space wasted.

Introducing: Virtuoso Inference

So now we simply rely on Virtuoso to do all that and it does such a wonderful job. Thanks to Virtuoso graph groups we can keep our clean ontology separation (each ontology has its own graph) and still stick to a very simple extension of the queries:

DEFINE input:inference <nepomuk:/ontographgroup>
select * where {
  ?r rdfs:label "foobar" .
}

Brilliant. Of course there are still situations in which you do not want to use the inferencer. Imagine for example the listing of resource properties in the UI. This is what it would look like with inference:

We do not want that. Inference is intended for machine, not for the human, at least not like this. So since back in the day I did not think of adding query flags to Soprano I simply introduced a new virtual query language: SparqlNoInference.

Resource Visibility

While at it I also improved the resource visibility support by simplifying it. We do not need any additional processing anymore. This again means less work on startup and with every triple manipulation command. Again we save space and increase performance. But this also means that resource visibility filtering will not work as before anymore. Nepoogle for example will need adjustment to the new way of filtering. Instead of

?r nao:userVisible 1 .

we now need

FILTER EXISTS { ?r a [ nao:userVisible "true"^^xsd:boolean ] }

Testing

The implementation is done. All that rests are the tests. I am already running all the patches but I still need to adjust some unit tests and maybe write new ones.

You can also test it. The code changes are, as always, spread over Soprano, kdelibs and kde-runtime. Both kdelibs and kde-runtime now contain a branch “nepomuk/virtuosoInference”. For Soprano you need git master.

Look for regressions of any kind so we can merge this as soon as possible. The goal is KDE 4.9.

Advertisements